Simplifying a Logic Gate

Brute force method

When given a circuit, looking at the output gates to the inputs can give an algebraic expression for the circuit

y=(A \wedge \neg B ) \\ y= ((C\vee D )\wedge \neg B) \\ y = ((C\vee D )\wedge \neg (D \oplus E)) \\ y = (((x_1 \oplus x_3)\vee D )\wedge \neg (D \oplus E)) \\ y = (((x_1 \oplus x_3)\vee (x_1 \oplus x_2))\wedge \neg (D \oplus E)) \\ y = (((x_1 \oplus x_3)\vee (x_1 \oplus x_2))\wedge \neg ((x_1 \oplus x_2) \oplus E)) \\ \\ y = (((x_1 \oplus x_3)\vee (x_1 \oplus x_2))\wedge \neg ((x_1 \oplus x_2) \oplus (x_3\oplus x_4)) \end{gather}$$ This method can be verbose, and is typically used when other methods of simplification do not work. ### Pattern Method An alternative way to see how this circuit behaves (or can be simplified into) is by looking for patterns in the inputs that entail a true result. ![[Pasted image 20250120201214.png]] ![[Pasted image 20250120201325.png]]